It’s been a long time since I last wrote about SkyPlanner development, but I still kept working on it, enabling lots of new features.
The Telescopes page has been redesigned to include also eyepieces and barlow/focal reduces, and therefore has also been renamed to “Optical Instruments” in your settings menu.

Instruments Page
Instruments Page

Adding at least a telescope and an eyepiece will show a new panel in the session pages, with all possible combinations, calculating magnification and field of view.
It will also add a new menu when clicking on a DSS preview image, that will show you field of view circles overlay.

Field of View Menu
            <figcaption>Field of View Menu</figcaption>

Field of View Overlay
            <figcaption>Field of View Overlay</figcaption>

Filters have been heavly improved. We have now lots of new filters, and the existing ones were redesigned to offer a better experience.

Now you can filter by object type, by magnitude, time of transit, altitude, constellation, previously observed objects, angular size, catalogue. Filters are available both in the main objects list and in the “Suggested Objects” panel, allowing you to fine tune SkyPlanner suggestions for planning your stargazing night.

The “Suggested Objects” list can now be sorted also by magnitude and time.

A new interesting feature is the post-session report: when reviewing a past session, you can mark as observer each object in your list.

After doing so, a “report” button will appear for that object, allowing you to write an extended description of your observation.

Finally, clicking the “Report” button on the top toolbar will display your report almost ready to be printed. You may wish to click the “Write report” button to write some notes about the whole session, instead of single objects.

Additionally, you can share your report. By default this is disabled, but clicking the “Share” button will make it publicly available.

You can share it with a few options: first, a web address, that you can embedd on your blog/website, or send via email. But you can also one of the predefined buttons for social sharing, on Google+, Facebook, Twitter.

But sharing is now enabled also for the regular session planning: in the “preview with images” section of a planned session you’ll see the same “Share” button.

Lastly, there were a few additions to the objects catalogues, most notably the Barnard catalogue of dark objects.

These were just a few highlights, to find out more just go to SkyPlanner home page and try it.

I’ve been long waiting for sharing SkyPlanner source code in a public repository.

Problem is, I had to fix a few copyright headers, cleanup some stuff, and, you know, laziness.

Now I finally published them on my GitHub account:

It’s still missing a README file for compiling and all, but if someone is curious about how SkyPlanner works, this is a huge start for poking it.

Happy hacking!

When programming in C++ it can often happen to be using C-style API.
These usually come in the form:

int some_api_call(char *inputParameter, char **outputParameter);

where the return value is never a real output value, but instead an exit code, and usually 0 means success.

To handle such API in a sequence of operations, one is then usually blinded to do something like this:

 int result = first_c_api_call();
 if(result != 0) {
 cerr << "Error executing first_c_api_call: " << result << endl;

result = second_c_api_call();
if(result != 0) {
cerr << "Error executing second_c_api_call: " << result << endl;

result = third_c_api_call();

and so on, which is kinda boring when you have to call lots of API functions in one method.

I have been trying to write some kind of wrapper that can help making this a bit easier.
In a real life example, I’ve been trying to use gphoto2 api in a c++11 application.
Using c++11 lambdas and RAII this is what I’ve been able to do:

 void GPhotoCamera::connect() {
      CameraAbilities abilities;
      GPPortInfo portInfo;
      CameraAbilitiesList *abilities_list = nullptr;
      GPPortInfoList *portInfoList = nullptr;
      CameraText camera_summary;
      CameraText camera_about;
      int model, port;
        sequence_run( [&]{ return gp_abilities_list_new (&abilities_list); } ),
        sequence_run( [&]{ return gp_abilities_list_load(abilities_list, d->context); } ),
        sequence_run( [&]{ model = gp_abilities_list_lookup_model(abilities_list, d->model.toLocal8Bit()); return model; } ),
        sequence_run( [&]{ return gp_abilities_list_get_abilities(abilities_list, model, &abilities); } ),
        sequence_run( [&]{ return gp_camera_set_abilities(d->camera, abilities); } ),
        sequence_run( [&]{ return gp_port_info_list_new(&portInfoList); } ),
        sequence_run( [&]{ return gp_port_info_list_load(portInfoList); } ),
        sequence_run( [&]{ return gp_port_info_list_count(portInfoList); } ),
        sequence_run( [&]{ port = gp_port_info_list_lookup_path(portInfoList, d->port.c_str()); return port; } ),
        sequence_run( [&]{ return gp_port_info_list_get_info(portInfoList, port, &portInfo); return port; } ),
        sequence_run( [&]{ return gp_camera_set_port_info(d->camera, portInfo); } ),
        sequence_run( [&]{ return gp_camera_get_summary(d->camera, &camera_summary, d->context); } ),
        sequence_run( [&]{ return gp_camera_get_about(d->camera, &camera_about, d->context); } ),
      }, make_shared<QMutexLocker>(&d->mutex)}
      .on_error([=](int errorCode, const std::string &label) {
        qDebug() << "on " << label << ": " << gphoto_error(errorCode);
        emit error(this, gphoto_error(errorCode));
        d->summary = QString(camera_summary.text);
        d->about = QString(camera_about.text);
        emit connected();    
      // TODO d->reloadSettings();

I can then declare some variables in the first part of the method, and inside the “gp_api” block i can execute a sequence of operation, each one returning an int value. This value is automatically checked for an error, and if it it’s a success exit code, the next sequence block is executed.
run_last is finally executed if all steps are completed successfully. An optional mutex locker (QMutexLocker) is passed to the gp_api block as the last constructor argument, to automatically lock the c api for multithreading.

How have I accomplished this?

This is the main class so far:

#include <functional>
#include <list>
#include <mutex>

typedef std::shared_ptr<std::unique_lock<std::mutex>> default_lock;
template<typename T, T defaultValue, typename check_operator = std::equal_to<T>, typename RAII_Object = default_lock>
class sequence {
  typedef std::function<T()> run_function;
  typedef std::function<void(const T &, const std::string &)> on_error_f;
  struct run {
    run_function f;
    std::string label;
    T check;
    run(run_function f, const std::string &label = {}, T check = defaultValue) : f(f), label(label), check(check) {}
  sequence(const std::list<run> &runs, const RAII_Object &raii_object = {}) : runs(runs), _check_operator(check_operator{}), raii_object(raii_object) {}
  ~sequence() {
    for(auto r: runs) {
      T result = r.f();
      if(! _check_operator(result, r.check)) {
    _run_on_error(result, r.label);
  sequence &on_error(on_error_f run_on_error) { _run_on_error = run_on_error; return *this; }
  sequence &run_last(std::function<void()> run_last) { _run_last = run_last; return *this; }
  sequence &add(run r) { runs.push_back(r); }
  std::list<run> runs;
  on_error_f _run_on_error = [](const T&, const std::string&) {};
  check_operator _check_operator;
  std::function<void()> _run_last = []{};
  RAII_Object raii_object;
#define sequence_run(...) { __VA_ARGS__ , #__VA_ARGS__}

The sequence class accepts a list of runs as construction parameters. These are stored as a class field, and sequentially executed at class destruction.
Sequence is a template class: you can define the return value type, the success value, a comparison operator to check each function result code against the success value, and finally a generic RAII_Object, which can be as previously told a mutex locker, or some other kind of resource to unlock after API executions.

The define directive at the end of the code is used to automatically create a run object which already contains a description of the code being executed (stringified).
You get this description in the on_error callback.

Near my gphoto class I also added a typedef to conveniently call the proper sequence template class with correct template parameters:

typedef sequence<int, GP_OK, std::greater_equal<int>, std::shared_ptr<QMutexLocker>> gp_api;

Which means that gp_api accepts code blocks returning int values, that the “ok” value is GP_OK (0), and that the returned value must be equal or greater than GP_OK to be considered a success run.
It also accepts a QMutexLocker shared pointer for thread locking.
As you can see in my first example I didn’t assign the gp_api object to any variable; this means that it is immediatly created, executed and destructed, for synchronous run.

So this is a simplified usage example:

  sequence_run([&]{ return first_c_api_call(); }),
  sequence_run([&]{ return second_c_api_call(); }),
}, std::make_shared<QMutexLocker>(&&;mutex)}
  .on_error([=](int errorCode, const std::string &label) {
      std::cerr << "Error at code block " << label << ": " << errorCode << std::endl;
    // run when everything runned smoothly